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Abstract: This study develops an eye tracking method for autostereoscopic three-dimensional (3D)
display systems for use in various environments. The eye tracking-based autostereoscopic 3D
display provides low crosstalk and high-resolution 3D image experience seamlessly without 3D
eyeglasses by overcoming the viewing position restriction. However, accurate and fast eye position
detection and tracking are still challenging, owing to the various light conditions, camera control,
thick eyeglasses, eyeglass sunlight reflection, and limited system resources. This study presents a
robust, automated algorithm and relevant systems for accurate and fast detection and tracking of
eye pupil centers in 3D with a single visual camera and near-infrared (NIR) light emitting diodes
(LEDs). Our proposed eye tracker consists of eye–nose detection, eye–nose shape keypoint alignment,
a tracker checker, and tracking with NIR LED on/off control. Eye–nose detection generates facial
subregion boxes, including the eyes and nose, which utilize an Error-Based Learning (EBL) method
for the selection of the best learnt database (DB). After detection, the eye–nose shape alignment
is processed by the Supervised Descent Method (SDM) with Scale-invariant Feature Transform
(SIFT). The aligner is content-aware in the sense that corresponding designated aligners are applied
based on image content classification, such as the various light conditions and wearing eyeglasses.
The conducted experiments on real image DBs yield promising eye detection and tracking outcomes,
even in the presence of challenging conditions.

Keywords: eye detection; eye tracking; content-aware eye alignment; error reinforcement learning;
autostereoscopic three-dimensional display; augmented reality display

1. Introduction

Autostereoscopic three-dimensional (3D) displays provide immersive visual experiences with
a realistic sense of the image depth without the need for 3D eyeglasses [1,2]. Although multiview
autostereoscopic 3D displays can be observed without 3D eyeglasses, they suffer from limited 3D
viewing zones and decreased image resolution, owing to the number of 3D views [1,2]. The eye
tracking-based autostereoscopic 3D method overcomes these limitations, allows a single-user,
seamless 3D experience, and provides higher 3D resolution contents. Several consumer applications
for a single user can utilize this technique, such as mobile devices, personal monitors, and game
consoles. One of the commercial eye tracking-based 3D display products is the Nintendo 3DS.
Additionally, our 10.1” tablet and 31.5” personal monitor prototypes that use the eye tracking-based
directional subpixel rendering algorithm are described in [2,3]. Additionally, this eye tracking-based
autostereoscopic 3D method can also be utilized in head-up displays (HUDs) (Figure 1a), which have
been increasingly used by the automotive industry. Visual contents are shown directly in the
line-of-sight via combiners or windshields. While two-dimensional (2D) HUD shows augmented
reality (AR) information in a 2D virtual plane that causes additional distraction and visual mismatches,
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AR 3D HUD can overlap 3D visual information directly on the street or road objects following the
adjustment of the 3D depth [4,5]. The real-time eye tracking system can work on various consumer
electronics platforms; it is not limited to autostereoscopic 3D display systems including 3D HUD
as described. The eye tracking method can be adopted in various consumer electronics, such as
driver monitors in automobiles [6,7], augmented and virtual reality [8], smartphones, gaming devices,
and televisions [9]. In particular, for driver monitoring systems in automobiles, the eye tracking method
can capture the driver’s state by checking the speed of pupil movement and head pose estimation
from face normal direction. These can be utilized as indicators of drivers’ attention levels. Further,
smartphones and digital cameras can use the eye tracking method for autofocus on human eyes
rather than whole faces [10]. Additionally, when the eye-position-tracking method is extended to
gaze-tracking techniques when combined with eye glints information, its application extends to a
variety of human–machine interactions [11–13].
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In eye tracking-based autostereoscopic 3D display systems, the left and right images are 
separated by the 3D eye locations of the viewers, whereby the pixel values are adapted according to 
the left and right eye positions in real-time by the directional subpixel rendering algorithms [2,3]. 
With more accurate and faster eye-center position tracking, 3D images with lower crosstalk and 
higher 3D resolution can be provided, even when the head movements of the users are considered in 
real-time. The allowed accuracy of the eye tracking position and tracking speed for our real-time 3D 
system prototypes were described in our previous study [2]. When the optimal viewing distance 
between the user and the eye tracking camera at vehicles was assumed to be between 400 and 1000 
mm considering common drivers’ viewing conditions, the allowed eye-positional error margins were 
8 mm in the x-direction (Figure 1b), 20 mm in the y-direction, and 300 mm in the z-direction for the 
designed 27-view optical design. The overall 3D rendering system latency in our proposed 3D 
systems consists of the camera capturing, the subpixel rendering, 3D image/graphics rendering, and 
eye tracking times, whereby the crosstalk increases when the users move [2]. To reduce the crosstalk 
that is induced when the user’s head moves, faster eye tracking is used which lowers the overall 
system latency. When the eye tracking fails, it restarts the detection mode, which scans the whole 
image to find the eye–nose area with relatively lower speed (16 ms), compared to the tracking mode 
(5 ms) which utilized a small region of interest from the eye tracking success in the previous camera 
frame. Therefore, it is desirable to maintain the tracking mode at each frame without execution of 
detection module, in terms of the overall system latency. 

Many efforts have been expended in the development of eye tracking over the last few decades. 
While earlier approaches were often intrusive and required wearable devices, such as head-mounted 
devices, recent studies employed eye capturing hardware techniques with computer vision to track 
eyes at farther distances at approximately 1 m [14]. Reflection from the pupil cornea and bright pupils 
are commonly used for remote eye-gaze tracking. This scheme requires near infrared (NIR) light 

Figure 1. (a) Example of an augmented reality three-dimensional head-up display (AR 3D HUD) system
and (b) autostereoscopic display eye-position margin in the x-direction. A 27-view autostereoscopic 3D
display design is shown as an example in (b).

In eye tracking-based autostereoscopic 3D display systems, the left and right images are separated
by the 3D eye locations of the viewers, whereby the pixel values are adapted according to the left
and right eye positions in real-time by the directional subpixel rendering algorithms [2,3]. With more
accurate and faster eye-center position tracking, 3D images with lower crosstalk and higher 3D
resolution can be provided, even when the head movements of the users are considered in real-time.
The allowed accuracy of the eye tracking position and tracking speed for our real-time 3D system
prototypes were described in our previous study [2]. When the optimal viewing distance between the
user and the eye tracking camera at vehicles was assumed to be between 400 and 1000 mm considering
common drivers’ viewing conditions, the allowed eye-positional error margins were 8 mm in the
x-direction (Figure 1b), 20 mm in the y-direction, and 300 mm in the z-direction for the designed
27-view optical design. The overall 3D rendering system latency in our proposed 3D systems consists
of the camera capturing, the subpixel rendering, 3D image/graphics rendering, and eye tracking times,
whereby the crosstalk increases when the users move [2]. To reduce the crosstalk that is induced when
the user’s head moves, faster eye tracking is used which lowers the overall system latency. When the
eye tracking fails, it restarts the detection mode, which scans the whole image to find the eye–nose
area with relatively lower speed (16 ms), compared to the tracking mode (5 ms) which utilized a small
region of interest from the eye tracking success in the previous camera frame. Therefore, it is desirable
to maintain the tracking mode at each frame without execution of detection module, in terms of the
overall system latency.

Many efforts have been expended in the development of eye tracking over the last few decades.
While earlier approaches were often intrusive and required wearable devices, such as head-mounted
devices, recent studies employed eye capturing hardware techniques with computer vision to track
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eyes at farther distances at approximately 1 m [14]. Reflection from the pupil cornea and bright
pupils are commonly used for remote eye-gaze tracking. This scheme requires near infrared (NIR)
light sources, whereby the camera sensor and light sources should be located on specific locations
each [14,15]. The accuracy of these techniques depends on how well the hardware devices generate
and capture eye images. In these techniques, the center positions of the eye are detected by capturing
both the bright and dark pupils by adjusting the NIR illuminating sources with long (318 mm) bar-type
devices [8]. Additionally, recent advances in computer vision and face recognition algorithms have
allowed red–green–blue (RGB) web-camera-based eye position tracking without the need to capture
bright or dark pupils or corneal reflections. In these types of methods, pupil centers can be calculated
from conventional face detection and facial landmark point-alignment methods [16–25]. However,
fast and accurate face detection and facial shape point alignments are still challenging. Real-time eye
detection and tracking are particularly challenging owing to user conditions, such as shaking and
pose, various light conditions, system latency, camera control, thick eyeglasses, sunglasses, and limited
system resources. NIR light sources are usually adopted in low-light conditions, but they suffer from
eyeglass reflection that obstructs eye shape visibility in reconstructed images (Figure 2).
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Figure 2. Challenging cases for pupil tracking in real-world applications.

The authors propose a practical and robust computer vision-based, eye tracking algorithm
and a relevant system that satisfies autostereoscopic 3D system requirements in various user and
environmental conditions. It consists of an eye–nose region detection and an eye–nose facial keypoint
alignment and tracking option. The detection algorithms and tracking/alignment are based on machine
learning, and not on deep neural networks, whereby only central processing unit (CPU) calculations
are required when the limited system resources are considered in real consumer products. The aligner
is content-aware in the sense that based on image content classification, such as the various light
conditions or instances at which the users wear eyeglasses, corresponding designated aligners are
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applied. The authors have previously described a preliminary algorithm for the detection and tracking
of pupil centers that was validated on simple images [26]. In this study, the authors describe an improved
algorithm, with respect to [26], and system targeting real usage on autostereoscopic 3D personal
monitors, tablets, and HUD systems. The aim of our study was to develop a robust and practical
algorithm to detect and track 3D eye positions from a single camera and simple NIR light-emitting
diodes (LED) in various challenging environments. The proposed machine learning-based method
was validated on a real-time webcam based on 3D display and a DB that consisted of user face
recorded videos.

This study is organized as follows. The proposed algorithm is described in Section 2 and consists
of the eye detection and tracking features. In Section 2, our eye tracking system for autostereoscopic
3D displays is also discussed. Experimental results are described in Section 3, and the discussion on
the algorithm and results are presented in Section 4. Concluding remarks are outlined in Section 5.

2. Materials and Methods

The authors categorized the proposed work in three different subsections. In each subsection,
first, the authors review related works and explain the proposed work. The basic components of our
proposed eye tracker can be divided into two main stages: (1) eye–nose region detection from RGB or
NIR webcam images, and (2) position tracking of the eye center from the detected eye–nose region.
Once the detection succeeds, the algorithm operates only in the tracking mode until tracking eye
position fails. The tracking mode consists of two steps, namely, the eye–nose shape alignment based
on 11 landmark points and the tracking of every camera frame with the tracker checker (Figure 3).
Note that the tracked 2D eye position is converted to 3D coordinates for autostereoscopic 3D display
systems, as described in Section 3.
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2.1. Eye–Nose Detection

Adaboost is one of the extensively used methods for detecting objects, especially for face
detection [18–20]. By utilizing intensity differences between patches in an image, known as Haar-like
features [18], a strong classifier can be designed by reweighting erroneous samples from weak
classifiers under the Adaboost training framework. Owing to the challenging real-world problems
for object detection, such as severe pose, extreme low-lighting, obstructions, and low resolution,
continuous developments have been made to improve accuracy and stability in this field. Recently,
convolutional neural network (CNN)-based face detection approaches, including SqueezeDet [16],
region CNN (R-CNN) [21], and multitask CNN (MTCNN) [22], have been developed to overcome some
of existing real-world problems such as various light conditions and face partial occlusions, however,
they still require computational resources, large corpora of databases for training, expensive training
efforts, and considerable graphics processing unit (GPU) power. Therefore, in some applications where
fast computation is critical and limited computational resources are available, GPU-based approaches
may not be always a desired choice.

To overcome previous object detection approaches for handling real-world problems, the authors
propose an Error-Based Learning (EBL) framework. Given that our primary goal is to detect eyes in
faces, the authors focused on eye detection instead of face detection or object detection in this study,
despite the fact that the main EBL framework could be applied to other detection schemes in the same
manner. The basic Adaboost training framework with multiblock local binary pattern (LBP) was used
for the basic eye detector. However, previous approaches did not provide guidance on how to train a
database with a large size (DB).

The motivation behind EBL is the human learning process. At the child development stage,
the human brain establishes neuronal connections continually, while many unused connections or
memories are easily eliminated. Based on education, humans continue to develop necessary skills and
thoughts that can be suitable for self-survival in society. Through this youth stage, humans continue to
update or change their previous ideas and thoughts based on experiences on a trial-and-error basis.
As a result, the decision rule may continue to change throughout adulthood, although the number of
mistakes humans can make is reduced considerably compared with the childhood and youth stages.

EBL comprises three stages (Early, Middle, and Mature), which can be analogous to the
aforementioned human learning stages. The authors used a cascaded classifier with N boosting
substages for each stage in EBL. To handle various user and light conditions, we constructed more
than 1 M face (or eye) image datasets which consisted of public DBs such as the CMU Multi-PIE face
database [27] and our own captured face images in various circumstances. In addition, various 60 B
negative samples for the EBL training were constructed by capturing various scenes without faces.
At each training stage of EBL, the number of negative images from 60 B datasets randomly sampled
was the same as the number of positive face images for training. At the Early stage, a conventional
cascaded Adaboost classifier can be designed by using a subset of the entire training database,
0.1 M images. Given that the total number of training face (or eye) DBs can easily exceed 1 M,
the authors did not attempt to start with large corpora for training. Instead, only a subset of the
DB, which is randomly sampled, can be used to obtain a cascaded Adaboost classifier at the Early
stage. By using the classifier designed in the Early stage, the 1 M entire face images and 60 B negative
images were evaluated, and only erroneous samples were collected for both positive and negative
samples. Herein, correctly classified samples in the Early stage are removed. In this way, only a small
number of important samples for the classification remain, and these erroneous samples are used for
the Middle-stage training. Finally, a new collection of erroneous samples, falsely classified by the
Middle stage, is also used for training a classifier in the Mature stage. As a result, the final number of
erroneous samples classified by the Mature stage was very small relative to the total number related to
all the training DBs. Thus, Mature stage training continues to be used if errors exist in the Mature
stage. The final classifier after a certain number of iterations of Mature stage training can become
much stronger and the training time can be reduced by more than 50 times (5 days versus 3 h with 1 M
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face images), while accuracy is improved. By utilizing error samples in the Early and Middle stages,
the authors searched the new feature space and evaluated all the training samples for the adjustment
of the classifier. In the Mature stage, only samples that were important for the classification remained.
The authors assumed that these samples were the most important samples for eye–nose classification
and should be used for final training. Typically, for eye detection, only 5% of the training samples (50 K
out of 1 M samples) were used after the completion of the Mature stage training process. The overall
block diagram of the proposed EBL is shown in Figure 4.Sensors 2020, 20, x FOR PEER REVIEW 6 of 17 

 

 
Figure 4. Overview of the Error-Based Learning (EBL) framework. 

Suppose the existence of the entire training DB is composed of positive samples, the actual used 
training DB, and the validation DB in the form of Dtotal_training_DB, Dactual_training_DB, and Dvalidation_DB, 
respectively. Let the corresponding numbers of these databases be Ntotal_tranining_DB, Nactual_training_DB, and 
Nvalidation_DB, and the number of positive samples and negative samples be denoted by Npositive_training_DB, 
Nnegative_training_DB, whereby Nnegative_training_DB >> Ntotal_training_DB. The procedures used for training EBL can 
be explained in Figure 5. 

Figure 4. Overview of the Error-Based Learning (EBL) framework.

Suppose the existence of the entire training DB is composed of positive samples, the actual
used training DB, and the validation DB in the form of Dtotal_training_DB, Dactual_training_DB,
and Dvalidation_DB, respectively. Let the corresponding numbers of these databases be Ntotal_tranining_DB,
Nactual_training_DB, and Nvalidation_DB, and the number of positive samples and negative samples be
denoted by Npositive_training_DB, Nnegative_training_DB, whereby Nnegative_training_DB >> Ntotal_training_DB.
The procedures used for training EBL can be explained in Figure 5.

2.2. Content-Aware Eye Alignment

After the detector identifies the eye–nose region, the tracking mode starts to extract the coordinates
of the centers of the pupils based on eye–nose shape alignments with the use of the supervised descent
method (SDM) [17], and the scale-invariant feature transform (SIFT) [23]. With the extracted SIFT
features from the eye–nose image region, regression-based landmark point alignment is performed by
SDM, whereby the SDM model trains a sequence of descent directions that minimize the mean of the
nonlinear square functions from each landmark point [23]. Compared with the conventional shape
modeling techniques, such as the active appearance model (AAM) [24], and active shape modeling
(ASM) [25], the SDM does not train any shape or appearance model. This overcomes the problem of
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the excessive computational cost and yields improved accuracy. Recent advances in deep learning
techniques yielded CNN-based facial point alignment methods, such as MTCNN [22]. However,
these CNN-based methods still require considerable system resources—such as GPU and expensive
training efforts—that are associated with speed issues in real-time HUD systems.Sensors 2020, 20, x FOR PEER REVIEW 7 of 17 
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Because SDM, which is a regression-based method, solves the shape alignment problem as a
general optimization problem, the single SDM aligner cannot be easily optimized globally on the
training image DB in various conditions. To handle this problem, the authors propose a content-aware
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eye–nose shape alignment method. The proposed method is content-aware in the sense that different
SDM aligners are applied according to the image content categories. Content classification was
performed on the twice enlarged eye–nose region obtained from eye–nose alignment in the previous
camera frame, and each of the DB performed its own SDM aligner model training and testing. Based on
the image quality and condition, such as bright or dark images, NIR images, eyeglass reflections,
use of thick eyeglasses, etc., corresponding aligners were applied. This step is illustrated in Figure 6.
Unlike EBL-based detector model training, each content-aware SDM aligner trains the content of each
image dataset without utilizing error samples, based only on error-free samples to achieve better
representation of the image content characteristics.
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2.3. Tracker Checker

To prevent erroneous detection or tracking, the authors propose a novel tracker checker idea.
The proposed tracker checker guarantees that the aligned results contain the eyes. Once the eye-nose
shape alignment process is executed, the proposed tracker checker performs the final examination of
the tracking results irrespective of whether it tracks eyes or not. Small eye-nose regions calculated from
the tracked eye-nose alignment are used for machine learning-based classification as tracker checkers.
If the aligned results are judged poorly by the tracker checker, the tracking mode stops, and the
eye-nose detector restarts at the subsequent frame. Otherwise, the eye tracking system maintains the
tracking mode by executing the eye-detector module. In this way, more efficient and faster eye tracking
system computations can be achieved.

Our proposed tracker checker consisted of SIFT features and support vector machine (SVM)
classifiers [28], along with the LBP-based eye detector that was used in the eye detector under the
EBL framework. With the use of two different feature spaces, such as SIFT and LBP, and with the
use of two different classification schemes, such as a set of weak classifiers (Adaboost) and a strong
classifier (SVM), our designed tracker checker is guaranteed to be maintained active as long as the
aligned results contain the two pupils (Figure 7). Therefore, most of the time during which the user is
present in front of our eye tracking system, the tracker checker tries to maintain the tracking mode
instead of the detection mode.
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2.4. Eye Tracking Systems for Autostereoscopic 3D Displays

Based on each component, as described in Section 2, the authors have designed an overall 2D eye
tracking scheme for autostereoscopic 3D displays. The 3D position of the pupil centers is calculated
along a direction normal to the face and at a fixed interpupillary distance (IPD). The direction normal
to the face is estimated based on the alignment of the 3D face model to the 2D tracked 11 eye-nose
landmark points. The authors utilized a widely used 3D face model, the Candide-3 head model [29],
which is a generic 3D face model that consists of 113 vertices and 168 surfaces. This facial model
deforms according to the change in positions and movements of mouth, nose, eyes, etc. [30]. The IPD
was assumed to have a fixed value of 65 mm, which is a median value of adult IPDs in the range 50
and 75 mm [31]. Using a fixed IPD is a limitation of our study.

The overall flowchart of the proposed system and algorithm is shown in Figure 3. One of
the noticeable challenging problems that degrade the performance of the eye tracking system is
low lighting. Given that most of the high-speed camera sensors do not properly capture images in
low-light conditions with a high speed (need at least 60 fps for latency issues), the authors utilized
an NIR camera (with active LED lighting), which was turned on when the visual image quality
was extremely poor in low-light conditions. Illumination classification was performed to switch the
visual/IR camera. Herein, the authors removed the R cut filter, and only a single camera was operated
for both the visual and NIR modes of operation. Basic components, as discussed in Section 2, that is,
the eye-nose detector, eye-nose alignment, and pupil tracking, were designed for each modality with
corresponding quality measures to handle a wide range of real-world image conditions. For each
modality, image content-based tracking modules were operated. In other words, by using the visual
aligner and the NIR aligner in Figure 6, our eye tracking system could overcome a wide range of
image/illumination/user conditions by switching between the visual/NIR modes in a smart manner.
Specifically, an in-painting algorithm was applied on an eyeglass reflection area of the NIR DB images
for both training and testing as a preprocessing stage for the aligners [32]. Because our eye-alignment
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algorithm utilized pixel gradient information, the authors in-painted the reflection area in a way that
minimized the edges from NIR reflections (Figure 8). This was a necessary step used to improve
robustness in the instances at which eyeglasses were present in NIR conditions. It is worth mentioning
that the use of the eye–nose region in Section 2 focused more on pupil center alignments, and thus,
prevented pupil centers from erroneous alignments, which were less affected by the alignment of other
parts of the face in various illumination conditions.
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Pixel-to-pixel Euclidean distance mean error normalized by the IPD was applied to evaluate the
performance for the proposed eye aligner precision. We also used cumulative error analysis on the
normalized mean error.

3. Results

The proposed algorithm was implemented with C++ and yielded successful real-time detection
(~60 fps) and tracking (~200 fps) with different environments, users, and system challenges, based only
on CPU computations. When the tracking mode was considered, the execution time was approximately
5 ms on a standard 2.5 GHz personal computer which ran Windows 7. Additionally, when tested
on a commercial mobile tablet, a commercial embedded computing board for 3D HUD achieved
almost the same eye tracking speed. Figure 9 shows some of our real-time seamless pupil tracking
examples during actual driving outdoors in normal (RGB camera in Figure 9a) and low-light conditions
(NIR camera in Figure 9b) with a single camera with NIR LEDs. The camera image resolution was
640 × 480 with a capturing speed of 60 fps, a 60◦ × 40◦ field-of-view, and an NIR LED emission
wavelength of 940 nm. This worked robustly in illumination changing conditions with or without
eyeglasses while the head was moving.

The detector model was trained with eye–nose region labeling on, with various RGB and NIR face
image datasets with the use of the EBL method. The training samples at the Mature stage of the EBL
method included 660,000 RGB and 60,000 NIR image datasets. For the SDM aligner, different models
were trained separately with 11 eye–nose landmark points as the ground truth on different image
content categories. The authors generated several different aligner models for our content-aware eye
trackers: good quality RGB images in normal light conditions, moderate quality RGB images in bright
and dark light conditions, poor quality RGB images with thick eyeglasses, good quality NIR images,
and bad quality NIR images with eyeglass reflection (Table 1). For each aligner model, the authors
trained with 60,000 image training samples. The proposed SVM-based tracker checker used the same
image DB as that used for each different SDM aligner.
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Table 1. Training DB for detector and Aligner.

Training DB (Detector) DB Type DB Number

joint DB
(RGB + NIR)

RGB DB (general illumination) 660,000
NIR DB (low illumination) 60,000

Training DB (Aligner) DB Type DB Number

content-aware DB
(separated DB training)

normal (RGB) 30,000
small eyes (RGB) 30,000

eyeglass reflection (RGB) 30,000
thick eyeglasses (RGB) 30,000

normal (RGB) 30,000
eyeglasses reflection (NIR) 30,000

The authors tested our algorithm on image and video DB entries captured in normal office
environments (100–400 lux) and in challenging conditions outdoors based on images of drivers or
passengers during the daytime, sunset, and night times (5–10,000 lux). For the image DB evaluation,
100,000 conditioned RGB images and 30,000 NIR images were tested, which were not used in the
training process. Additionally, short-video datasets (approximately 30 s each, with a capturing speed
of 60 fps at distances of approximately 0.6 m from the camera) were recorded inside the office based
on adjustments of the light conditions and outside during actual driving in the morning, afternoon,
and night times. The authors tested 10 RGB and 10 NIR videos of various people. The average detector
accuracy was 99.4% on the RGB image DB and 98.1% on the NIR image DB. The average aligner
precision error was 1 ± 0.7 mm on the RGB images and 2 ± 1.1 mm on the NIR images (Table 2).
The aligner precision measurement was calculated by the distances between the ground truth and
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the tracked pupil centers, whereby the pixel distances were converted to physical distances based
on the assumption that the IPD was 65 mm. For the video dataset, the authors obtained a detector
accuracy of 99.1% on the RGB and 99.9% on the NIR, and an aligner precision of 1.5 ± 0.9 mm on the
RGB and 2.0 ± 1.2 mm on the NIR. The overall performance of the proposed eye tracker had a detector
accuracy of 98.7%, a tracker precision error of 1.5 ± 0.8 mm, and a tracker checker accuracy of 99.9%.
The cumulative mean errors were 83% under 1 mm error, 92% under error 2 mm error, 98% under
error 3mm error, and 99% under 5 mm error.

Table 2. Testing DB for Detector and Aligner.

Testing DB DB Type Detection Accuracy Tracker Precision

general illumination
office area (100–400 lux) 99.8% 1 mm

driving outside
(50–10,000 lux) 99% 2 mm

low illumination driving outside (5–50 lux) 98.1% 2 mm

4. Discussion

Our results demonstrated high accuracy and fast speed regarding the tracking of the position of
the eye center in various illumination and user conditions. The algorithm was validated on image and
video datasets in indoor environments in which light was adjusted, and in actual driving conditions
outdoors that targeted real consumer products such as personal monitors, tablets at home and offices,
and HUD in vehicles. The authors defined normal conditions as indoor normal light conditions in
offices (100–400 lux) without any obstacles for the alignment of eye shapes, including cases in which
the subjects wore thick eyeglasses. When the performances in normal conditions (99% at 1 mm) and
challenging conditions (98% at 2 mm) were compared, both the detector and the aligner performances
diminished in the cases of challenging conditions. Table 3 shows the detailed performance of the
proposed method in various challenging conditions. In the RGB mode of operation, eye tracking
datasets pertaining to sunlight reflection on eyeglasses yielded the largest alignment errors (4.3 mm).

Table 3. Performance in various challenging conditions.

Testing DB Detection Accuracy Tracker Precision

average normal (RGB) 99.8% 1 mm
average driving outside (RGB) 99% 2 mm

small eyes (RGB) 100% 3.1 mm
eyeglass reflection (RGB) 99.7% 4.3 mm

thick eyeglasses (RGB) 93.8% 1.9 mm
average low light (NIR) 100% 2 mm

wearing eyeglasses in low-light conditions (NIR) 99.1% 2.9 mm

Specifically, wearing eyeglasses without antiglare coatings caused inaccurate tracking (Figure 10).
For NIR modes, the detector performance was almost the same for each challenging case, but the aligner
suffered from eyeglass NIR reflection with large errors (2.9 mm). This indicates that our SDM-based
aligner performance depends on how pupils are clearly captured by cameras. When the average pupil
size (radius = 3 mm) was considered in normal light conditions, the results generated for challenging
cases were still reasonable.

One of the main advances compared with previously published works is that our method was
content-aware, whereby different eye trackers were applied according to the image conditions, such as
normal, bright, dark, low-light cases, and cases with thick eyeglasses and eyeglass sunlight reflection
(Figure 10). Specifically, low-light conditions can be handled with NIR LED control and with the NIR
image DB-based eye tracker. Additionally, compared with previous methods that detected faces or
eye–nose regions, our proposed detection utilized the novel EBL approach. The EBL method typically
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trains only a small fraction (less than 5%) of the detection training image DBs in much shorter training
times, while improving the detection rate through three stages.
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Figure 10. Single-model eye-tracker versus the proposed content-aware eye-tracker on one of the
challenging cases that related to eyeglass reflection based on sunlight. The initial shape points inside
the detector box (left) are regressed to optimal shape points by the content-designated, SDM-trained
aligner (right). Compared with the conventional single-model eye-tracker, the proposed content-aware
eye-tracker successfully aligned the correct eye positions.

A number of studies attempted automatic face detection and facial landmark point alignment
with higher accuracy, including deep learning-based techniques. Despite the fact that even the
state-of-the-art, deep learning-based methods accomplish considerable improvements compared with
classical methods, they suffer from increased computational resources and lower speed requirements.
This study proposed a practical eye-center position-tracking method, whereby our method was
based on face detection and alignment techniques, but with priority assigned to the accuracy of the
eye position. To minimize the errors from other shape misalignments, we reduced the number of
points to 11 (i.e., two eye center points, four eye shapes, and six nose shape points after extensive
experiments on different points). The performance comparison between our proposed algorithm
and one of the fastest deep learning detector techniques, SqueezeDet (57.2 fps) [16], is listed in
Table 4. Additionally, our proposed tracker was compared with one of the most precise deep neural
net-based eye–face alignment methods, MTCNN (Table 4) [22]. While CNN-based methods require
considerable GPU computations, our content-aware pupil tracking algorithm achieved higher detection
accuracy, lower pupil precision error, and higher speed in both the high- and low-light conditions with
CPU computation.

To validate the effectiveness of our method, the authors carried out a 3D crosstalk study with
our autostereoscopic 3D display prototype systems. The total system latency was approximately
70 ms, which included the camera capturing time, eye tracking time, 3D and graphics rendering time,
data transmission time, and display output time. Subjective 3D quality tests of the autostereoscopic 3D
display were also performed with the proposed eye tracking method. Users did not experience any
crosstalk with our eye tracker when they moved at normal speeds, but they experienced increased
crosstalk during fast head movements (>0.2 m/s) owing to the system latency. Specifically, when the
eye tracker restarted from the detector mode after tracking was lost, the users experienced distinct
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crosstalk. This can occur when side mirrors or side cars are checked while driving, whereby the user’s
head pose is outside the allowed pose limit (yaw, raw, pitch of 30◦) of our eye-tracker algorithms.

Table 4. Performance comparison between previous studies and the proposed algorithm.

Testing DB (Detector) SqueezeDet [16] Proposed

normal light (RGB) 99% 99.4%
low light (NIR) 35.1% 98.1%

Eye-glasses (DB) 89.31% 99%
speed 57.2 fps (GPU) 60 fps (CPU)

Testing DB (Aligner) MTCNN [22] Proposed

normal light (RGB) 4.2 mm 1 mm
low light (NIR) 5.4 mm 2 mm

eye-glasses (DB) 6.7 mm 2 mm

speed 16 fps (CPU) 200 fps (CPU)
99 fps (GPU)

There are a few limitations associated with our study. Our proposed method suffers in the cases
at which the pupil’s shape is obstructed, such as the cases in which subjects wear sunglasses, or when
sunlight is reflected on eyeglasses. Specifically, NIR eyeglass reflection decreased the precision and
accuracy of the tracking of the pupil center. NIR reflection can be minimized by adding a special
hardware system solution, such as the separating camera sensor, NIR LEDs, and dynamic NIR LED
light control. Additionally, wearing sunglasses yielded limited performance in eye alignments because
pupil locations were estimated with other shapes, owing to the invisibility of the pupils due to the
sunglasses. To increase the instances in which sunglasses can be used, personalized pupil tracking
technologies will be studied in the future.

Figure 11 displays an additional number of results of our test faces acquired during actual
vehicular driving.
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5. Conclusions

This study presented a practical real-time pupil tracking system and an algorithm that used a single
camera and a NIR LED. Our proposed method yielded robust performance in various illumination
conditions, which is extremely important and highly beneficial for AR 3D HUD. This demonstrates the
proposed method’s superior performance compared with other state-of-the-art approaches for pupil
tracking in terms of accuracy and speed, and with the use of fewer computational resources.
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